The TLST program was created and designed to align with the emerging field of translational science - both as a research area and practice in industry. Students will learn how to apply their fundamental biology and chemistry knowledge and laboratory techniques to interdisciplinary challenges within the biotechnology design and development process in areas like bioinformatics, bioprocessing, or manufacturing. With a TLST degree, students will be well prepared for a job where they can independently work as a research associate, process developer, data specialist or other key member within the pharmaceutical, agricultural, or environmental industry. Students will also be equipped for a career in translational science research where one studies ways to innovate and improve efficiencies in the drug development process.

With a TLST degree, students have a chance to use their passion for and talent in science to improve society. TLST training arms students with practical skills to contribute to and innovate within the biotech design and development process which will impact how the biotech industry more effectively and efficiently address complex societal challenges in health, food and environment.
Since my early undergraduate days, I’ve been driven to use my STEM talents to make a societal impact.

After completing my Bachelor’s degree in Mechanical Engineering at UMBC, I moved into an area where I felt like I could have more societal impact with my engineering degree – bioengineering research. At the Georgia Institute of Technology, I studied the mechanokinetic adhesion process of a cell surface receptor called E-selectin that causes leukocytes to roll on vascular surfaces during the inflammatory response.

Following Georgia Tech, I wanted to work more directly on the healthcare solutions that save lives. So I took a job at Becton, Dickenson, & Co. (BD), a $12 billion global medical technology company that works in the area of medical discovery, diagnostics and the delivery of care.

I then took my work global through employment at the U.S. Agency for International Development (USAID). I initiated a number of programs and policies for supporting scientific research that would have that societal impact locally in a developing country, regionally or even globally. It was important that the scientific work we funded lead to a policy, program or innovation to address challenges in global health, agriculture, biodiversity, energy, disaster, or other critical areas. Reflecting on my experience at USAID and BD, I see the translation of scientific discoveries into life-saving solutions as an area needing further attention.

Now I have the chance to use my STEM to produce a more prepared workforce for the over 300 biotechnology companies in Maryland that will find solutions to current and future, complex challenges. Looking back, there was a consistent theme in my career – my interest in translating what is produced from science and engineering to solutions that would serve society. I’m privileged to now have the chance to develop a degree program to prepare students for a career in that area – one I wish I had when I was an undergrad. I look forward to working with you!

Dr. Annica Wayman
Associate Dean
College of Natural and Mathematical Sciences
awayman@umbc.edu | 301-738-6092 | shadygrove.umbc.edu/tlst